Identification and cloning of GOLDEN2-LIKE1 (GLK1), a transcription factor associated with chloroplast development in Brassica napus L.

نویسندگان

  • Y L Pan
  • Y Pan
  • C M Qu
  • C G Su
  • J H Li
  • X G Zhang
چکیده

Photosynthesis is the process by which dry matter accumulates, which affects rapeseed yield. In this study, we identified GOLDEN2-LIKE1 (GLK1), located on chromosome A07 and 59.2 kb away from the single nucleotide polymorphism marker SNP16353A07, which encodes a transcription factor associated with the rate of photosynthesis in leaves. We then identified 96 GLK1 family members from 53 species using a hidden Markov model (HMM) search and found 24 of these genes, which were derived from 17 Brassicaceae species. Phylogenetic analysis showed that 24 Brassicaceae proteins were classified into three subgroups, named the Brassica family, Adenium arabicum, and Arabidopsis. Using homologous cloning methods, we identified four BnaGLK1 copies; however, the coding sequences were shorter than the putative sequences from the reference genome, probably due to splicing errors among the reference genome sequence or different gene copies being present in the different B. napus lines. In addition, we found that BnaGLK1 genes were expressed at higher levels in leaves with more chloroplasts than were present in other leaves. Overexpression of BnaGLK1a resulted in darker leaves and siliques than observed in the control, suggesting that BnaGLK1 might promote chloroplast development to affect the rate of photosynthesis in leaves. These results will help to elucidate the mechanism of chloroplast biogenesis by GLK1 in B. napus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription Factor ATAF1 in Arabidopsis Promotes Senescence by Direct Regulation of Key Chloroplast Maintenance and Senescence Transcriptional Cascades.

Senescence represents a fundamental process of late leaf development. Transcription factors (TFs) play an important role for expression reprogramming during senescence; however, the gene regulatory networks through which they exert their functions, and their physiological integration, are still largely unknown. Here, we identify the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)- and hy...

متن کامل

Ubiquitin-Proteasome Dependent Regulation of the GOLDEN2-LIKE 1 Transcription Factor in Response to Plastid Signals.

Arabidopsis (Arabidopsis thaliana) GOLDEN2-LIKE (GLK) transcription factors promote chloroplast biogenesis by regulating the expression of photosynthesis-related genes. Arabidopsis GLK1 is also known to participate in retrograde signaling from chloroplasts to the nucleus. To elucidate the mechanism by which GLK1 is regulated in response to plastid signals, we biochemically characterized Arabido...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

Molecular Cloning and Characterization of a Putative BnHEC3 Gene in Oilseed Rape (Brassica Napus)

HECATE3 (HEC3) is an important transcription factor involved in regulating the carpel and transmitting tract development in Arabidopsis thaliana. The homologous gene of HEC3 in Brassica napus (designed as BnHEC3) was obtained by in silico cloning and rapid amplification of cDNA end (RACE) method. BnHEC3 obtained from cDNA is of 748 bp, containing an open reading frame (ORF) of 546bp and coding ...

متن کامل

A Brassica napus Lipase Locates at the Membrane Contact Sites Involved in Chloroplast Development

BACKGROUND Fatty acids synthesized in chloroplast are transported to endoplasmic reticulum (ER) for triacylglycerols (TAGs) resembling. The development of chloroplast also requires lipids trafficking from ER to chloroplast. The membrane contact sites (MCSs) between ER and chloroplast has been demonstrated to be involved for the trafficking of lipids and proteins. Lipids trafficking between ER a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2017